2.1. Wicks theorem
By Joseph Tooby-Smith
2.1.1. Introduction
Wicks theorem
In this note we walk through the important parts of the proof of the three versions of Wick's theorem for field operators containing carrying both fermionic and bosonic statistics, as it appears in PhysLean. Not every lemma or definition is covered here. The aim is to give just enough that the story can be understood.
Before proceeding with the steps in the proof, we review some basic terminology
related to Lean and type theory. The most important notion is that of a type.
We don't give any formal definition here, except to say that a type T
, like a set, has
elements x
which we say are of type T
and write x : T
. Examples of types include,
the type of natural numbers ℕ
, the type of real numbers ℝ
, the type of numbers
0, …, n-1
denoted Fin n
. Given two types T
and S
, we can form the product type T × S
,
and the function type T → S
.
Types form the foundation of Lean and the theory behind them will be used both explicitly and implicitly throughout this note.
2.1.2. Field operators
2.1.2.1. Field statistics
The type FieldStatistic
is the type containing two elements bosonic
and fermionic
.
This type is used to specify if a field or operator obeys bosonic or fermionic statistics.
Constructors
bosonic : FieldStatistic
fermionic : FieldStatistic
Show Lean signature:
FieldStatistic : Type
The type FieldStatistic
carries an instance of a commutative group in which
-
bosonic * bosonic = bosonic
-
bosonic * fermionic = fermionic
-
fermionic * bosonic = fermionic
-
fermionic * fermionic = bosonic
This group is isomorphic to ℤ₂
.
Show Lean signature:
FieldStatistic.instCommGroup : CommGroup FieldStatistic
The exchange sign, exchangeSign
, is defined as the group homomorphism
FieldStatistic →* FieldStatistic →* ℂ
,
for which exchangeSign a b
is -1
if both a
and b
are fermionic
and 1
otherwise.
The exchange sign is the sign one picks up on exchanging an operator or field φ₁
of statistic
a
with an operator or field φ₂
of statistic b
, i.e. φ₁φ₂ → φ₂φ₁
.
The notation 𝓢(a, b)
is used for the exchange sign of a
and b
.
Show Lean signature:
FieldStatistic.exchangeSign : FieldStatistic →* FieldStatistic →* ℂ
2.1.2.2. Field specifications
The structure FieldSpecification
is defined to have the following content:
-
A type
Field
whose elements are the constituent fields of the theory. -
For every field
f
inField
, a typePositionLabel f
whose elements label the different position operators associated with the fieldf
. For example,-
For
f
a real-scalar field,PositionLabel f
will have a unique element. -
For
f
a complex-scalar field,PositionLabel f
will have two elements, one for the field operator and one for its conjugate. -
For
f
a Dirac fermion,PositionLabel f
will have eight elements, one for each Lorentz index of the field and its conjugate. -
For
f
a Weyl fermion,PositionLabel f
will have four elements, one for each Lorentz index of the field and its conjugate.
-
-
For every field
f
inField
, a typeAsymptoticLabel f
whose elements label the different types of incoming asymptotic field operators associated with the fieldf
(this also matches the types of outgoing asymptotic field operators). For example,-
For
f
a real-scalar field,AsymptoticLabel f
will have a unique element. -
For
f
a complex-scalar field,AsymptoticLabel f
will have two elements, one for the field operator and one for its conjugate. -
For
f
a Dirac fermion,AsymptoticLabel f
will have four elements, two for each spin. -
For
f
a Weyl fermion,AsymptoticLabel f
will have two elements, one for each spin.
-
-
For each field
f
inField
, a field statisticstatistic f
which classifiesf
as eitherbosonic
orfermionic
.
Show Lean signature:
FieldSpecification : Type 1
2.1.2.3. Field operators
For a field specification 𝓕
, the inductive type 𝓕.FieldOp
is defined
to contain the following elements:
-
For every
f
in𝓕.Field
, element ofe
ofAsymptoticLabel f
and3
-momentump
, an element labelledinAsymp f e p
corresponding to an incoming asymptotic field operator of the fieldf
, of labele
(e.g. specifying the spin), and momentump
. -
For every
f
in𝓕.Field
, element ofe
ofPositionLabel f
and space-time positionx
, an element labelledposition f e x
corresponding to a position field operator of the fieldf
, of labele
(e.g. specifying the Lorentz index), and positionx
. -
For every
f
in𝓕.Field
, element ofe
ofAsymptoticLabel f
and3
-momentump
, an element labelledoutAsymp f e p
corresponding to an outgoing asymptotic field operator of the fieldf
, of labele
(e.g. specifying the spin), and momentump
.
As an example, if f
corresponds to a Weyl-fermion field, then
-
For
inAsymp f e p
,e
would correspond to a spins
, andinAsymp f e p
would, once represented in the operator algebra, be proportional to the creation operatora(p, s)
. -
position f e x
,e
would correspond to a Lorentz indexa
, andposition f e x
would, once represented in the operator algebra, be proportional to the operator∑ s, ∫ d³p/(…) (xₐ(p,s) a(p, s) e ^ (-i p x) + yₐ(p,s) a†(p, s) e ^ (-i p x))
. -
outAsymp f e p
,e
would correspond to a spins
, andoutAsymp f e p
would, once represented in the operator algebra, be proportional to the annihilation operatora†(p, s)
.
Constructors
inAsymp {𝓕 : _root_.FieldSpecification} : ((f : 𝓕.Field) × 𝓕.AsymptoticLabel f) × (Fin 3 → ℝ) → 𝓕.FieldOp
position {𝓕 : _root_.FieldSpecification} : ((f : 𝓕.Field) × 𝓕.PositionLabel f) × SpaceTime → 𝓕.FieldOp
outAsymp {𝓕 : _root_.FieldSpecification} : ((f : 𝓕.Field) × 𝓕.AsymptoticLabel f) × (Fin 3 → ℝ) → 𝓕.FieldOp
Show Lean signature:
FieldSpecification.FieldOp (𝓕 : FieldSpecification) : Type
For a field specification 𝓕
, and an element φ
of 𝓕.FieldOp
.
The field statistic fieldOpStatistic φ
is defined to be the statistic associated with
the field underlying φ
.
The following notation is used in relation to fieldOpStatistic
:
Show Lean signature:
FieldSpecification.fieldOpStatistic (𝓕 : FieldSpecification) : 𝓕.FieldOp → FieldStatistic
The type CreateAnnihilate
is the type containing two elements create
and annihilate
.
This type is used to specify if an operator is a creation, or annihilation, operator
or the sum thereof or integral thereof etc.
Constructors
create : CreateAnnihilate
annihilate : CreateAnnihilate
Show Lean signature:
CreateAnnihilate : Type
For a field specification 𝓕
, the (sigma) type 𝓕.CrAnFieldOp
corresponds to the type of creation and annihilation parts of field operators.
It formally defined to consist of the following elements:
-
For each incoming asymptotic field operator
φ
in𝓕.FieldOp
an element written as⟨φ, ()⟩
in𝓕.CrAnFieldOp
, corresponding to the creation part ofφ
. Hereφ
has no annihilation part. (Here()
is the unique element ofUnit
.) -
For each position field operator
φ
in𝓕.FieldOp
an element of𝓕.CrAnFieldOp
written as⟨φ, .create⟩
, corresponding to the creation part ofφ
. -
For each position field operator
φ
in𝓕.FieldOp
an element of𝓕.CrAnFieldOp
written as⟨φ, .annihilate⟩
, corresponding to the annihilation part ofφ
. -
For each outgoing asymptotic field operator
φ
in𝓕.FieldOp
an element written as⟨φ, ()⟩
in𝓕.CrAnFieldOp
, corresponding to the annihilation part ofφ
. Hereφ
has no creation part. (Here()
is the unique element ofUnit
.)
As an example, if f
corresponds to a Weyl-fermion field, it would contribute
the following elements to 𝓕.CrAnFieldOp
-
For each spin
s
, an element corresponding to an incoming asymptotic operator:a(p, s)
. -
For each each Lorentz index
a
, an element corresponding to the creation part of a position operator:∑ s, ∫ d³p/(…) (xₐ (p,s) a(p, s) e ^ (-i p x))
. -
For each each Lorentz index
a
,an element corresponding to annihilation part of a position operator:∑ s, ∫ d³p/(…) (yₐ(p,s) a†(p, s) e ^ (-i p x))
. -
For each spin
s
, element corresponding to an outgoing asymptotic operator:a†(p, s)
.
Show Lean signature:
FieldSpecification.CrAnFieldOp (𝓕 : FieldSpecification) : Type
For a field specification 𝓕
, 𝓕.crAnFieldOpToCreateAnnihilate
is the map from
𝓕.CrAnFieldOp
to CreateAnnihilate
taking φ
to create
if
-
φ
corresponds to an incoming asymptotic field operator or the creation part of a position based field operator.
otherwise it takes φ
to annihilate
.
Show Lean signature:
FieldSpecification.crAnFieldOpToCreateAnnihilate (𝓕 : FieldSpecification) : 𝓕.CrAnFieldOp → CreateAnnihilate
For a field specification 𝓕
, and an element φ
in 𝓕.CrAnFieldOp
, the field
statistic crAnStatistics φ
is defined to be the statistic associated with the field 𝓕.Field
(or the 𝓕.FieldOp
) underlying φ
.
The following notation is used in relation to crAnStatistics
:
-
For
φ
an element of𝓕.CrAnFieldOp
,𝓕 |>s φ
iscrAnStatistics φ
. -
For
φs
a list of𝓕.CrAnFieldOp
,𝓕 |>s φs
is the product ofcrAnStatistics φ
over the listφs
.
Show Lean signature:
FieldSpecification.crAnStatistics (𝓕 : FieldSpecification) : 𝓕.CrAnFieldOp → FieldStatistic
Insert FieldSpecification.notation_remark
here
2.1.2.4. Field-operator free algebra
For a field specification 𝓕
, the algebra 𝓕.FieldOpFreeAlgebra
is
the free algebra generated by 𝓕.CrAnFieldOp
.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra (𝓕 : FieldSpecification) : Type
Insert FieldSpecification.FieldOpFreeAlgebra.naming_convention
here
For a field specification 𝓕
, and a element φ
of 𝓕.CrAnFieldOp
,
ofCrAnOpF φ
is defined as the element of 𝓕.FieldOpFreeAlgebra
formed by φ
.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.ofCrAnOpF {𝓕 : FieldSpecification} (φ : 𝓕.CrAnFieldOp) : 𝓕.FieldOpFreeAlgebra
The algebra 𝓕.FieldOpFreeAlgebra
satisfies the universal property that for any other algebra
A
(e.g. the operator algebra of the theory) with a map f : 𝓕.CrAnFieldOp → A
(e.g.
the inclusion of the creation and annihilation parts of field operators into the
operator algebra) there is a unique algebra map g : 𝓕.FieldOpFreeAlgebra → A
such that g ∘ ofCrAnOpF = f
.
The unique g
is given by FreeAlgebra.lift ℂ f
.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.universality {𝓕 : FieldSpecification} {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A) : ∃! g, ⇑g ∘ FieldSpecification.FieldOpFreeAlgebra.ofCrAnOpF = f
For a field specification 𝓕
, and a list φs
of 𝓕.CrAnFieldOp
,
ofCrAnListF φs
is defined as the element of 𝓕.FieldOpFreeAlgebra
obtained by the product of ofCrAnListF φ
for each φ
in φs
.
For example ofCrAnListF [φ₁, φ₂, φ₃] = ofCrAnOpF φ₁ * ofCrAnOpF φ₂ * ofCrAnOpF φ₃
.
The set of all ofCrAnListF φs
forms a basis of FieldOpFreeAlgebra 𝓕
.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.ofCrAnListF {𝓕 : FieldSpecification} (φs : List 𝓕.CrAnFieldOp) : 𝓕.FieldOpFreeAlgebra
For a field specification 𝓕
, and an element φ
of 𝓕.FieldOp
,
ofFieldOpF φ
is the element of 𝓕.FieldOpFreeAlgebra
formed by summing over
ofCrAnOpF
of the
creation and annihilation parts of φ
.
For example, for φ
an incoming asymptotic field operator we get
ofCrAnOpF ⟨φ, ()⟩
, and for φ
a
position field operator we get ofCrAnOpF ⟨φ, .create⟩ + ofCrAnOpF ⟨φ, .annihilate⟩
.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.ofFieldOpF {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) : 𝓕.FieldOpFreeAlgebra
For a field specification 𝓕
, and a list φs
of 𝓕.FieldOp
,
𝓕.ofFieldOpListF φs
is defined as the element of 𝓕.FieldOpFreeAlgebra
obtained by the product of ofFieldOpF φ
for each φ
in φs
.
For example ofFieldOpListF [φ₁, φ₂, φ₃] = ofFieldOpF φ₁ * ofFieldOpF φ₂ * ofFieldOpF φ₃
.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.ofFieldOpListF {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) : 𝓕.FieldOpFreeAlgebra
Insert FieldSpecification.FieldOpFreeAlgebra.notation_drop
here
For a field specification 𝓕
, the algebra 𝓕.FieldOpFreeAlgebra
is graded by FieldStatistic
.
Those ofCrAnListF φs
for which φs
has an overall bosonic
statistic
(i.e. 𝓕 |>s φs = bosonic
) span bosonic
submodule, whilst those ofCrAnListF φs
for which φs
has an overall fermionic
statistic
(i.e. 𝓕 |>s φs = fermionic
) span
the fermionic
submodule.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.fieldOpFreeAlgebraGrade {𝓕 : FieldSpecification} : GradedAlgebra FieldSpecification.FieldOpFreeAlgebra.statisticSubmodule
For a field specification 𝓕
, the super commutator superCommuteF
is defined as the linear
map 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra
which on the lists φs
and φs'
of 𝓕.CrAnFieldOp
gives
superCommuteF φs φs' = φs * φs' - 𝓢(φs, φs') • φs' * φs
.
The notation [a, b]ₛF
can be used for superCommuteF a b
.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.superCommuteF {𝓕 : FieldSpecification} : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra
For a field specification 𝓕
, and two lists φs = φ₀…φₙ
and φs'
of 𝓕.CrAnFieldOp
the following super commutation relation holds:
[φs', φ₀…φₙ]ₛF = ∑ i, 𝓢(φs', φ₀…φᵢ₋₁) • φ₀…φᵢ₋₁ * [φs', φᵢ]ₛF * φᵢ₊₁ … φₙ
The proof of this relation is via induction on the length of φs
.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum {𝓕 : FieldSpecification} (φs φs' : List 𝓕.CrAnFieldOp) : (FieldSpecification.FieldOpFreeAlgebra.superCommuteF (FieldSpecification.FieldOpFreeAlgebra.ofCrAnListF φs)) (FieldSpecification.FieldOpFreeAlgebra.ofCrAnListF φs') = ∑ n : Fin φs'.length, (FieldStatistic.exchangeSign (FieldStatistic.ofList 𝓕.crAnStatistics φs)) (FieldStatistic.ofList 𝓕.crAnStatistics (List.take (↑n) φs')) • FieldSpecification.FieldOpFreeAlgebra.ofCrAnListF (List.take (↑n) φs') * (FieldSpecification.FieldOpFreeAlgebra.superCommuteF (FieldSpecification.FieldOpFreeAlgebra.ofCrAnListF φs)) (FieldSpecification.FieldOpFreeAlgebra.ofCrAnOpF (φs'.get n)) * FieldSpecification.FieldOpFreeAlgebra.ofCrAnListF (List.drop (↑n + 1) φs')
2.1.2.5. Field-operator algebra
For a field specification 𝓕
, the algebra 𝓕.FieldOpAlgebra
is defined as the quotient
of the free algebra 𝓕.FieldOpFreeAlgebra
by the ideal generated by
-
[ofCrAnOpF φc, ofCrAnOpF φc']ₛF
forφc
andφc'
field creation operators. This corresponds to the condition that two creation operators always super-commute. -
[ofCrAnOpF φa, ofCrAnOpF φa']ₛF
forφa
andφa'
field annihilation operators. This corresponds to the condition that two annihilation operators always super-commute. -
[ofCrAnOpF φ, ofCrAnOpF φ']ₛF
forφ
andφ'
operators with different statistics. This corresponds to the condition that two operators with different statistics always super-commute. In other words, fermions and bosons always super-commute. -
[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛF]ₛF
. This corresponds to the condition, when combined with the conditions above, that the super-commutator is in the center of the algebra.
Show Lean signature:
FieldSpecification.FieldOpAlgebra (𝓕 : FieldSpecification) : Type
For a field specification 𝓕
, ι
is defined as the projection
𝓕.FieldOpFreeAlgebra →ₐ[ℂ] 𝓕.FieldOpAlgebra
taking each element of 𝓕.FieldOpFreeAlgebra
to its equivalence class in FieldOpAlgebra 𝓕
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.ι {𝓕 : FieldSpecification} : 𝓕.FieldOpFreeAlgebra →ₐ[ℂ] 𝓕.FieldOpAlgebra
For a field specification 𝓕
and an element φ
of 𝓕.CrAnFieldOp
,
ofCrAnOp φ
is defined as the element of
𝓕.FieldOpAlgebra
given by ι (ofCrAnOpF φ)
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.ofCrAnOp {𝓕 : FieldSpecification} (φ : 𝓕.CrAnFieldOp) : 𝓕.FieldOpAlgebra
For a field specification 𝓕
and a list φs
of 𝓕.CrAnFieldOp
,
ofCrAnList φs
is defined as the element of
𝓕.FieldOpAlgebra
given by ι (ofCrAnListF φ)
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.ofCrAnList {𝓕 : FieldSpecification} (φs : List 𝓕.CrAnFieldOp) : 𝓕.FieldOpAlgebra
For a field specification 𝓕
and an element φ
of 𝓕.FieldOp
,
ofFieldOp φ
is defined as the element of
𝓕.FieldOpAlgebra
given by ι (ofFieldOpF φ)
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.ofFieldOp {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra
For a field specification 𝓕
and a list φs
of 𝓕.FieldOp
,
ofFieldOpList φs
is defined as the element of
𝓕.FieldOpAlgebra
given by ι (ofFieldOpListF φ)
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.ofFieldOpList {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) : 𝓕.FieldOpAlgebra
Insert FieldSpecification.FieldOpAlgebra.notation_drop
here
For a field specification 𝓕
, and an element φ
of 𝓕.FieldOp
, the
annihilation part of 𝓕.FieldOp
as an element of 𝓕.FieldOpAlgebra
.
Thus for φ
-
an incoming asymptotic state this is
0
. -
a position based state this is
ofCrAnOp ⟨φ, .create⟩
. -
an outgoing asymptotic state this is
ofCrAnOp ⟨φ, ()⟩
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.anPart {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra
For a field specification 𝓕
, and an element φ
of 𝓕.FieldOp
, the
creation part of 𝓕.FieldOp
as an element of 𝓕.FieldOpAlgebra
.
Thus for φ
-
an incoming asymptotic state this is
ofCrAnOp ⟨φ, ()⟩
. -
a position based state this is
ofCrAnOp ⟨φ, .create⟩
. -
an outgoing asymptotic state this is
0
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.crPart {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra
For field specification 𝓕
, and an element φ
of 𝓕.FieldOp
the following relation holds:
ofFieldOp φ = crPart φ + anPart φ
That is, every field operator splits into its creation part plus its annihilation part.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.ofFieldOp_eq_crPart_add_anPart {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.ofFieldOp φ = FieldSpecification.FieldOpAlgebra.crPart φ + FieldSpecification.FieldOpAlgebra.anPart φ
For a field statistic 𝓕
, the algebra 𝓕.FieldOpAlgebra
is graded by FieldStatistic
.
Those ofCrAnList φs
for which φs
has an overall bosonic
statistic
(i.e. 𝓕 |>s φs = bosonic
) span bosonic
submodule, whilst those ofCrAnList φs
for which φs
has an overall fermionic
statistic
(i.e. 𝓕 |>s φs = fermionic
) span the fermionic
submodule.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.fieldOpAlgebraGrade {𝓕 : FieldSpecification} : GradedAlgebra FieldSpecification.FieldOpAlgebra.statSubmodule
For a field specification 𝓕
, superCommute
is the linear map
FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕
defined as the descent of ι ∘ superCommuteF
in both arguments.
In particular for φs
and φs'
lists of 𝓕.CrAnFieldOp
in FieldOpAlgebra 𝓕
the following
relation holds:
superCommute φs φs' = φs * φs' - 𝓢(φs, φs') • φs' * φs
The notation [a, b]ₛ
is used for superCommute a b
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.superCommute {𝓕 : FieldSpecification} : 𝓕.FieldOpAlgebra →ₗ[ℂ] 𝓕.FieldOpAlgebra →ₗ[ℂ] 𝓕.FieldOpAlgebra
2.1.3. Time ordering
For a field specification 𝓕
, 𝓕.crAnTimeOrderRel
is a relation on
𝓕.CrAnFieldOp
representing time ordering.
It is defined such that 𝓕.crAnTimeOrderRel φ₀ φ₁
is true if and only if one of the following
holds
-
φ₀
is an outgoing asymptotic operator -
φ₁
is an incoming asymptotic field operator -
φ₀
andφ₁
are both position field operators where theSpaceTime
point ofφ₀
has a time greater than or equal to that ofφ₁
.
Thus, colloquially 𝓕.crAnTimeOrderRel φ₀ φ₁
if φ₀
has time greater than or equal to φ₁
.
The use of greater than rather then less than is because on ordering lists of operators
it is needed that the operator with the greatest time is to the left.
Show Lean signature:
FieldSpecification.crAnTimeOrderRel {𝓕 : FieldSpecification} (a b : 𝓕.CrAnFieldOp) : Prop
For a field specification 𝓕
, and a list φs
of 𝓕.CrAnFieldOp
,
𝓕.crAnTimeOrderList φs
is the list φs
time-ordered using the insertion sort algorithm.
Show Lean signature:
FieldSpecification.crAnTimeOrderList {𝓕 : FieldSpecification} (φs : List 𝓕.CrAnFieldOp) : List 𝓕.CrAnFieldOp
For a field specification 𝓕
, and a list φs
of 𝓕.CrAnFieldOp
,
𝓕.crAnTimeOrderSign φs
is the sign corresponding to the number of ferimionic
-fermionic
exchanges undertaken to time-order (i.e. order with respect to 𝓕.crAnTimeOrderRel
) φs
using
the insertion sort algorithm.
Show Lean signature:
FieldSpecification.crAnTimeOrderSign {𝓕 : FieldSpecification} (φs : List 𝓕.CrAnFieldOp) : ℂ
For a field specification 𝓕
, timeOrderF
is the linear map
FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕
defined by its action on the basis ofCrAnListF φs
, taking
ofCrAnListF φs
to
crAnTimeOrderSign φs • ofCrAnListF (crAnTimeOrderList φs)
.
That is, timeOrderF
time-orders the field operators and multiplies by the sign of the
time order.
The notation 𝓣ᶠ(a)
is used for timeOrderF a
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.timeOrderF {𝓕 : FieldSpecification} : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra
For a field specification 𝓕
, timeOrder
is the linear map
FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕
defined as the descent of ι ∘ₗ timeOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕
from
FieldOpFreeAlgebra 𝓕
to FieldOpAlgebra 𝓕
.
This descent exists because ι ∘ₗ timeOrderF
is well-defined on equivalence classes.
The notation 𝓣(a)
is used for timeOrder a
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.timeOrder {𝓕 : FieldSpecification} : 𝓕.FieldOpAlgebra →ₗ[ℂ] 𝓕.FieldOpAlgebra
For a field specification 𝓕
, the time order operator acting on a
list of 𝓕.FieldOp
, 𝓣(φ₀…φₙ)
, is equal to
𝓢(φᵢ,φ₀…φᵢ₋₁) • φᵢ * 𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)
where φᵢ
is the maximal time field
operator in φ₀…φₙ
.
The proof of this result ultimately relies on basic properties of ordering and signs.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.timeOrder_eq_maxTimeField_mul_finset {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (φ :: φs)) = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic (FieldSpecification.maxTimeField φ φs))) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic (FieldSpecification.eraseMaxTimeField φ φs).get (Finset.filter (fun x => (FieldSpecification.maxTimeFieldPosFin φ φs).succAbove x < FieldSpecification.maxTimeFieldPosFin φ φs) Finset.univ)) • FieldSpecification.FieldOpAlgebra.ofFieldOp (FieldSpecification.maxTimeField φ φs) * FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (FieldSpecification.eraseMaxTimeField φ φs))
For a field specification 𝓕
, and a
, b
, c
in 𝓕.FieldOpAlgebra
, then
𝓣(a * b * c) = 𝓣(a * 𝓣(b) * c)
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.timeOrder_timeOrder_mid {𝓕 : FieldSpecification} (a b c : 𝓕.FieldOpAlgebra) : FieldSpecification.FieldOpAlgebra.timeOrder (a * b * c) = FieldSpecification.FieldOpAlgebra.timeOrder (a * FieldSpecification.FieldOpAlgebra.timeOrder b * c)
2.1.4. Normal ordering
For a field specification 𝓕
, 𝓕.normalOrderRel
is a relation on 𝓕.CrAnFieldOp
representing normal ordering. It is defined such that 𝓕.normalOrderRel φ₀ φ₁
is true if one of the following is true
-
φ₀
is a field creation operator -
φ₁
is a field annihilation operator.
Thus, colloquially 𝓕.normalOrderRel φ₀ φ₁
says the creation operators are less than
annihilation operators.
Show Lean signature:
FieldSpecification.normalOrderRel {𝓕 : FieldSpecification} : 𝓕.CrAnFieldOp → 𝓕.CrAnFieldOp → Prop
For a field specification 𝓕
, and a list φs
of 𝓕.CrAnFieldOp
,
𝓕.normalOrderList φs
is the list φs
normal-ordered using the
insertion sort algorithm. It puts creation operators on the left and annihilation operators on
the right. For example:
𝓕.normalOrderList [φ1c, φ1a, φ2c, φ2a] = [φ1c, φ2c, φ1a, φ2a]
Show Lean signature:
FieldSpecification.normalOrderList {𝓕 : FieldSpecification} (φs : List 𝓕.CrAnFieldOp) : List 𝓕.CrAnFieldOp
For a field specification 𝓕
, and a list φs
of 𝓕.CrAnFieldOp
, 𝓕.normalOrderSign φs
is the
sign corresponding to the number of fermionic
-fermionic
exchanges undertaken to normal-order
φs
using the insertion sort algorithm.
Show Lean signature:
FieldSpecification.normalOrderSign {𝓕 : FieldSpecification} (φs : List 𝓕.CrAnFieldOp) : ℂ
For a field specification 𝓕
, a list φs = φ₀…φₙ
of 𝓕.CrAnFieldOp
and an i < φs.length
,
then
normalOrderSign (φ₀…φᵢ₋₁φᵢ₊₁…φₙ)
is equal to the product of
-
normalOrderSign φ₀…φₙ
, -
𝓢(φᵢ, φ₀…φᵢ₋₁)
i.e. the sign needed to removeφᵢ
fromφ₀…φₙ
, -
𝓢(φᵢ, _)
where_
is the list of elements appearing beforeφᵢ
after normal ordering, i.e. the sign needed to insertφᵢ
back into the normal-ordered list at the correct place.
Show Lean signature:
FieldSpecification.normalOrderSign_eraseIdx {𝓕 : FieldSpecification} (φs : List 𝓕.CrAnFieldOp) (i : Fin φs.length) : FieldSpecification.normalOrderSign (φs.eraseIdx ↑i) = FieldSpecification.normalOrderSign φs * (FieldStatistic.exchangeSign (𝓕.crAnStatistics (φs.get i))) (FieldStatistic.ofList 𝓕.crAnStatistics (List.take (↑i) φs)) * (FieldStatistic.exchangeSign (𝓕.crAnStatistics (φs.get i))) (FieldStatistic.ofList 𝓕.crAnStatistics (List.take (↑(FieldSpecification.normalOrderEquiv i)) (FieldSpecification.normalOrderList φs)))
For a field specification 𝓕
, normalOrderF
is the linear map
FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕
defined by its action on the basis ofCrAnListF φs
, taking ofCrAnListF φs
to
normalOrderSign φs • ofCrAnListF (normalOrderList φs)
.
That is, normalOrderF
normal-orders the field operators and multiplies by the sign of the
normal order.
The notation 𝓝ᶠ(a)
is used for normalOrderF a
for a
an element of
FieldOpFreeAlgebra 𝓕
.
Show Lean signature:
FieldSpecification.FieldOpFreeAlgebra.normalOrderF {𝓕 : FieldSpecification} : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra
For a field specification 𝓕
, normalOrder
is the linear map
FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕
defined as the descent of ι ∘ₗ normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕
from FieldOpFreeAlgebra 𝓕
to FieldOpAlgebra 𝓕
.
This descent exists because ι ∘ₗ normalOrderF
is well-defined on equivalence classes.
The notation 𝓝(a)
is used for normalOrder a
for a
an element of FieldOpAlgebra 𝓕
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.normalOrder {𝓕 : FieldSpecification} : 𝓕.FieldOpAlgebra →ₗ[ℂ] 𝓕.FieldOpAlgebra
For a field specification 𝓕
, and a
and b
in 𝓕.FieldOpAlgebra
the normal ordering
of the super commutator of a
and b
vanishes, i.e. 𝓝([a,b]ₛ) = 0
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.normalOrder_superCommute_eq_zero {𝓕 : FieldSpecification} (a b : 𝓕.FieldOpAlgebra) : FieldSpecification.FieldOpAlgebra.normalOrder ((FieldSpecification.FieldOpAlgebra.superCommute a) b) = 0
For a field specification 𝓕
, an element φ
of 𝓕.CrAnFieldOp
, a list φs
of 𝓕.CrAnFieldOp
,
the following relation holds
[φ, 𝓝(φ₀…φₙ)]ₛ = ∑ i, 𝓢(φ, φ₀…φᵢ₋₁) • [φ, φᵢ]ₛ * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)
.
The proof of this result ultimately goes as follows
-
The definition of
normalOrder
is used to rewrite𝓝(φ₀…φₙ)
as a scalar multiple of aofCrAnList φsn
whereφsn
is the normal ordering ofφ₀…φₙ
. -
superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum
is used to rewrite the super commutator ofφ
(considered as a list with one element) withofCrAnList φsn
as a sum of super commutators, one for each element ofφsn
. -
The fact that super-commutators are in the center of
𝓕.FieldOpAlgebra
is used to rearrange terms. -
Properties of ordered lists, and
normalOrderSign_eraseIdx
are then used to complete the proof.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.ofCrAnOp_superCommute_normalOrder_ofCrAnList_sum {𝓕 : FieldSpecification} (φ : 𝓕.CrAnFieldOp) (φs : List 𝓕.CrAnFieldOp) : (FieldSpecification.FieldOpAlgebra.superCommute (FieldSpecification.FieldOpAlgebra.ofCrAnOp φ)) (FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofCrAnList φs)) = ∑ n : Fin φs.length, (FieldStatistic.exchangeSign (𝓕.crAnStatistics φ)) (FieldStatistic.ofList 𝓕.crAnStatistics (List.take (↑n) φs)) • (FieldSpecification.FieldOpAlgebra.superCommute (FieldSpecification.FieldOpAlgebra.ofCrAnOp φ)) (FieldSpecification.FieldOpAlgebra.ofCrAnOp φs[n]) * FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofCrAnList (φs.eraseIdx ↑n))
For a field specification 𝓕
, a φ
in 𝓕.FieldOp
and a list φs
of 𝓕.FieldOp
then φ * 𝓝(φ₀φ₁…φₙ)
is equal to
𝓝(φφ₀φ₁…φₙ) + ∑ i, (𝓢(φ,φ₀φ₁…φᵢ₋₁) • [anPart φ, φᵢ]ₛ) * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)
.
The proof ultimately goes as follows:
-
ofFieldOp_eq_crPart_add_anPart
is used to splitφ
into its creation and annihilation parts. -
The following relation is then used
crPart φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(crPart φ * φ₀φ₁…φₙ)
. -
It used that
anPart φ * 𝓝(φ₀φ₁…φₙ)
is equal to𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ + [anPart φ, 𝓝(φ₀φ₁…φₙ)]
-
Then it is used that
𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ = 𝓝(anPart φ * φ₀φ₁…φₙ)
-
The result
ofCrAnOp_superCommute_normalOrder_ofCrAnList_sum
is used to expand[anPart φ, 𝓝(φ₀φ₁…φₙ)]
as a sum.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.ofFieldOp φ * FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList φs) = ∑ n : Option (Fin φs.length), FieldSpecification.FieldOpAlgebra.contractStateAtIndex φ φs n * FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (PhysLean.List.optionEraseZ φs φ n))
2.1.5. Wick Contractions
2.1.5.1. Definition
Given a natural number n
, which will correspond to the number of fields needing
contracting, a Wick contraction
is a finite set of pairs of Fin n
(numbers 0
, ..., n-1
), such that no
element of Fin n
occurs in more than one pair. The pairs are the positions of fields we
'contract' together.
Show Lean signature:
WickContraction (n : ℕ) : Type
For n = 3
there are 4
possible Wick contractions:
-
∅
, corresponding to the case where no fields are contracted. -
{{0, 1}}
, corresponding to the case where the field at position0
and1
are contracted. -
{{0, 2}}
, corresponding to the case where the field at position0
and2
are contracted. -
{{1, 2}}
, corresponding to the case where the field at position1
and2
are contracted.
The proof of this result uses the fact that Lean is an executable programming language
and can calculate all Wick contractions for a given n
.
Show Lean signature:
WickContraction.mem_three (c : WickContraction 3) : ↑c ∈ {∅, {{0, 1}}, {{0, 2}}, {{1, 2}}}
For n = 4
there are 10
possible Wick contractions including e.g.
-
∅
, corresponding to the case where no fields are contracted. -
{{0, 1}, {2, 3}}
, corresponding to the case where the fields at position0
and1
are contracted, and the fields at position2
and3
are contracted. -
{{0, 2}, {1, 3}}
, corresponding to the case where the fields at position0
and2
are contracted, and the fields at position1
and3
are contracted.
The proof of this result uses the fact that Lean is an executable programming language
and can calculate all Wick contractions for a given n
.
Show Lean signature:
WickContraction.mem_four (c : WickContraction 4) : ↑c ∈ {∅, {{0, 1}}, {{0, 2}}, {{0, 3}}, {{1, 2}}, {{1, 3}}, {{2, 3}}, {{0, 1}, {2, 3}}, {{0, 2}, {1, 3}}, {{0, 3}, {1, 2}}}
Insert WickContraction.contraction_notation
here
For a field specification 𝓕
, φs
a list of 𝓕.FieldOp
and a Wick contraction
φsΛ
of φs
, the Wick contraction φsΛ
is said to be GradingCompliant
if
for every pair in φsΛ
the contracted fields are either both fermionic
or both bosonic
.
In other words, in a GradingCompliant
Wick contraction if
no contracted pairs occur between fermionic
and bosonic
fields.
Show Lean signature:
WickContraction.GradingCompliant {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) : Prop
2.1.5.2. Aside: Cardinality
The number of Wick contractions in WickContraction n
is equal to the terms in
Online Encyclopedia of Integer Sequences (OEIS) A000085. That is:
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, ...
Show Lean signature:
WickContraction.card_eq_cardFun (n : ℕ) : Fintype.card (WickContraction n) = WickContraction.cardFun n
2.1.5.3. Uncontracted elements
For a Wick contraction c
, c.uncontracted
is defined as the finset of elements of Fin n
which are not in any contracted pair.
Show Lean signature:
WickContraction.uncontracted {n : ℕ} (c : WickContraction n) : Finset (Fin n)
Given a Wick Contraction φsΛ
of a list φs
of 𝓕.FieldOp
. The list
φsΛ.uncontractedListGet
of 𝓕.FieldOp
is defined as the list φs
with
all contracted positions removed, leaving the uncontracted 𝓕.FieldOp
.
The notation [φsΛ]ᵘᶜ
is used for φsΛ.uncontractedListGet
.
Show Lean signature:
WickContraction.uncontractedListGet {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : List 𝓕.FieldOp
2.1.5.4. Constructors
Given a Wick contraction φsΛ
for a list φs
of 𝓕.FieldOp
,
an element φ
of 𝓕.FieldOp
, an i ≤ φs.length
and a k
in Option φsΛ.uncontracted
i.e. is either none
or
some element of φsΛ.uncontracted
, the new Wick contraction
φsΛ.insertAndContract φ i k
is defined by inserting φ
into φs
after
the first i
-elements and moving the values representing the contracted pairs in φsΛ
accordingly.
If k
is not none
, but rather some k
, to this contraction is added the contraction
of φ
(at position i
) with the new position of k
after φ
is added.
In other words, φsΛ.insertAndContract φ i k
is formed by adding φ
to φs
at position i
,
and contracting φ
with the field originally at position k
if k
is not none
.
It is a Wick contraction of the list φs.insertIdx φ i
corresponding to φs
with φ
inserted at
position i
.
The notation φsΛ ↩Λ φ i k
is used to denote φsΛ.insertAndContract φ i k
.
Show Lean signature:
WickContraction.insertAndContract {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φ : 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : Option { x // x ∈ φsΛ.uncontracted }) : WickContraction (List.insertIdx (↑i) φ φs).length
For a list φs
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
and a i ≤ φs.length
then a sum over
Wick contractions of φs
with φ
inserted at i
is equal to the sum over Wick contractions
φsΛ
of just φs
and the sum over optional uncontracted elements of the φsΛ
.
In other words,
∑ (φsΛ : WickContraction (φs.insertIdx i φ).length), f φsΛ
where (φs.insertIdx i φ)
is φs
with φ
inserted at position i
. is equal to
∑ (φsΛ : WickContraction φs.length), ∑ k, f (φsΛ ↩Λ φ i k)
.
where the sum over k
is over all k
in Option φsΛ.uncontracted
.
Show Lean signature:
WickContraction.insertLift_sum.{u_1} {𝓕 : FieldSpecification} {M : Type u_1} (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp} (i : Fin φs.length.succ) [AddCommMonoid M] (f : WickContraction (List.insertIdx (↑i) φ φs).length → M) : ∑ c : WickContraction (List.insertIdx (↑i) φ φs).length, f c = ∑ φsΛ : WickContraction φs.length, ∑ k : Option { x // x ∈ φsΛ.uncontracted }, f (WickContraction.insertAndContract φ φsΛ i k)
Given a list φs
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
and a Wick contraction
φsucΛ
of [φsΛ]ᵘᶜ
, join φsΛ φsucΛ
is defined as the Wick contraction of φs
consisting of
the contractions in φsΛ
and those in φsucΛ
.
As an example, for φs = [φ1, φ2, φ3, φ4]
,
φsΛ = {{0, 1}}
corresponding to the contraction of φ1
and φ2
in φs
and
φsucΛ = {{0, 1}}
corresponding to the contraction of φ3
and φ4
in [φsΛ]ᵘᶜ = [φ3, φ4]
, then
join φsΛ φsucΛ
is the contraction {{0, 1}, {2, 3}}
of φs
.
Show Lean signature:
WickContraction.join {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (φsucΛ : WickContraction φsΛ.uncontractedListGet.length) : WickContraction φs.length
2.1.5.5. Sign
For a list φs
of 𝓕.FieldOp
, and a Wick contraction φsΛ
of φs
,
the complex number φsΛ.sign
is defined to be the sign (1
or -1
) corresponding
to the number of fermionic
-fermionic
exchanges that must be done to put
contracted pairs within φsΛ
next to one another, starting recursively
from the contracted pair
whose first element occurs at the left-most position.
As an example, if [φ1, φ2, φ3, φ4]
correspond to fermionic fields then the sign
associated with
-
{{0, 1}}
is1
-
{{0, 1}, {2, 3}}
is1
-
{{0, 2}, {1, 3}}
is-1
Show Lean signature:
WickContraction.sign {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) : ℂ
For a list φs
of 𝓕.FieldOp
, a grading compliant Wick contraction φsΛ
of φs
,
and a Wick contraction φsucΛ
of [φsΛ]ᵘᶜ
, the following relation holds
(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign
.
In φsΛ.sign
the sign is determined by starting with the contracted pair
whose first element occurs at the left-most position. This lemma manifests that this
choice does not matter, and that contracted pairs can be brought together in any order.
Show Lean signature:
WickContraction.join_sign {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (φsucΛ : WickContraction φsΛ.uncontractedListGet.length) (hc : WickContraction.GradingCompliant φs φsΛ) : WickContraction.sign φs (φsΛ.join φsucΛ) = WickContraction.sign φs φsΛ * WickContraction.sign φsΛ.uncontractedListGet φsucΛ
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a graded compliant Wick contraction φsΛ
of φs
,
an i ≤ φs.length
, and a φ
in 𝓕.FieldOp
, then
(φsΛ ↩Λ φ i none).sign = s * φsΛ.sign
where s
is the sign arrived at by moving φ
through the elements of φ₀…φᵢ₋₁
which
are contracted with some element.
The proof of this result involves a careful consideration of the contributions of different
FieldOp
s in φs
to the sign of φsΛ ↩Λ φ i none
.
Show Lean signature:
WickContraction.sign_insert_none {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (hG : WickContraction.GradingCompliant φs φsΛ) : WickContraction.sign (List.insertIdx (↑i) φ φs) (WickContraction.insertAndContract φ φsΛ i none) = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => (φsΛ.getDual? x).isSome = true ∧ i.succAbove x < i) Finset.univ)) * WickContraction.sign φs φsΛ
Show Lean signature:
WickContraction.sign_insert_none_zero {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) : WickContraction.sign (List.insertIdx (↑0) φ φs) (WickContraction.insertAndContract φ φsΛ 0 none) = WickContraction.sign φs φsΛ
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, a i ≤ φs.length
and a k
in φsΛ.uncontracted
such that i ≤ k
,
the sign of φsΛ ↩Λ φ i (some k)
is equal to the product of
-
the sign associated with moving
φ
through theφsΛ
-uncontractedFieldOp
inφ₀…φₖ₋₁
, -
the sign associated with moving
φ
through all theFieldOp
inφ₀…φᵢ₋₁
, -
the sign of
φsΛ
.
The proof of this result involves a careful consideration of the contributions of different
FieldOp
in φs
to the sign of φsΛ ↩Λ φ i (some k)
.
Show Lean signature:
WickContraction.sign_insert_some_of_not_lt {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : { x // x ∈ φsΛ.uncontracted }) (hk : ¬i.succAbove ↑k < i) (hg : WickContraction.GradingCompliant φs φsΛ ∧ 𝓕.fieldOpStatistic φ = 𝓕.fieldOpStatistic φs[↑k]) : WickContraction.sign (List.insertIdx (↑i) φ φs) (WickContraction.insertAndContract φ φsΛ i (some k)) = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => x < ↑k) φsΛ.uncontracted)) * (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => i.succAbove x < i) Finset.univ)) * WickContraction.sign φs φsΛ
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, a i ≤ φs.length
and a k
in φsΛ.uncontracted
such that k<i
,
the sign of φsΛ ↩Λ φ i (some k)
is equal to the product of
-
the sign associated with moving
φ
through theφsΛ
-uncontractedFieldOp
inφ₀…φₖ
, -
the sign associated with moving
φ
through allFieldOp
inφ₀…φᵢ₋₁
, -
the sign of
φsΛ
.
The proof of this result involves a careful consideration of the contributions of different
FieldOp
in φs
to the sign of φsΛ ↩Λ φ i (some k)
.
Show Lean signature:
WickContraction.sign_insert_some_of_lt {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : { x // x ∈ φsΛ.uncontracted }) (hk : i.succAbove ↑k < i) (hg : WickContraction.GradingCompliant φs φsΛ ∧ 𝓕.fieldOpStatistic φ = 𝓕.fieldOpStatistic φs[↑k]) : WickContraction.sign (List.insertIdx (↑i) φ φs) (WickContraction.insertAndContract φ φsΛ i (some k)) = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => x ≤ ↑k) φsΛ.uncontracted)) * (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => i.succAbove x < i) Finset.univ)) * WickContraction.sign φs φsΛ
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, and a k
in φsΛ.uncontracted
,
the sign of φsΛ ↩Λ φ 0 (some k)
is equal to the product of
-
the sign associated with moving
φ
through theφsΛ
-uncontractedFieldOp
inφ₀…φₖ₋₁
, -
the sign of
φsΛ
.
This is a direct corollary of sign_insert_some_of_not_lt
.
Show Lean signature:
WickContraction.sign_insert_some_zero {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (k : { x // x ∈ φsΛ.uncontracted }) (hn : WickContraction.GradingCompliant φs φsΛ ∧ 𝓕.fieldOpStatistic φ = 𝓕.fieldOpStatistic φs[↑k]) : WickContraction.sign (List.insertIdx (↑0) φ φs) (WickContraction.insertAndContract φ φsΛ 0 (some k)) = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => x < ↑k) φsΛ.uncontracted)) * WickContraction.sign φs φsΛ
2.1.5.6. Normal order
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, and a i ≤ φs.length
, then the following relation holds:
𝓝([φsΛ ↩Λ φ i none]ᵘᶜ) = s • 𝓝(φ :: [φsΛ]ᵘᶜ)
where s
is the exchange sign for φ
and the uncontracted fields in φ₀…φᵢ₋₁
.
The proof of this result ultimately is a consequence of normalOrder_superCommute_eq_zero
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.normalOrder_uncontracted_none {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) : FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (WickContraction.insertAndContract φ φsΛ i none).uncontractedListGet) = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => i.succAbove x < i) φsΛ.uncontracted)) • FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (φ :: φsΛ.uncontractedListGet))
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, a i ≤ φs.length
and a k
in φsΛ.uncontracted
, then
𝓝([φsΛ ↩Λ φ i (some k)]ᵘᶜ)
is equal to the normal ordering of [φsΛ]ᵘᶜ
with the 𝓕.FieldOp
corresponding to k
removed.
The proof of this result ultimately is a consequence of definitions.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.normalOrder_uncontracted_some {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) (k : { x // x ∈ φsΛ.uncontracted }) : FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (WickContraction.insertAndContract φ φsΛ i (some k)).uncontractedListGet) = FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (PhysLean.List.optionEraseZ φsΛ.uncontractedListGet φ ((WickContraction.uncontractedFieldOpEquiv φs φsΛ) (some k))))
2.1.6. Static Wick's theorem
2.1.6.1. Static contractions
For a list φs
of 𝓕.FieldOp
and a Wick contraction φsΛ
, the
element of the center of 𝓕.FieldOpAlgebra
, φsΛ.staticContract
is defined as the product
of [anPart φs[j], φs[k]]ₛ
over contracted pairs {j, k}
in φsΛ
with j < k
.
Show Lean signature:
WickContraction.staticContract {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : ↥(Subalgebra.center ℂ 𝓕.FieldOpAlgebra)
Show Lean signature:
WickContraction.staticContract_insert_none {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) : (WickContraction.insertAndContract φ φsΛ i none).staticContract = φsΛ.staticContract
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, a i ≤ φs.length
and a k
in φsΛ.uncontracted
, then
(φsΛ ↩Λ φ i (some k)).staticContract
is equal to the product of
-
[anPart φ, φs[k]]ₛ
ifi ≤ k
or[anPart φs[k], φ]ₛ
ifk < i
-
φsΛ.staticContract
.
The proof of this result ultimately is a consequence of definitions.
Show Lean signature:
WickContraction.staticContract_insert_some {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : { x // x ∈ φsΛ.uncontracted }) : (WickContraction.insertAndContract φ φsΛ i (some j)).staticContract = (if i < i.succAbove ↑j then ⟨(FieldSpecification.FieldOpAlgebra.superCommute (FieldSpecification.FieldOpAlgebra.anPart φ)) (FieldSpecification.FieldOpAlgebra.ofFieldOp φs[↑j]), ⋯⟩ else ⟨(FieldSpecification.FieldOpAlgebra.superCommute (FieldSpecification.FieldOpAlgebra.anPart φs[↑j])) (FieldSpecification.FieldOpAlgebra.ofFieldOp φ), ⋯⟩) * φsΛ.staticContract
2.1.6.2. Static Wick terms
For a list φs
of 𝓕.FieldOp
, and a Wick contraction φsΛ
of φs
, the element
of 𝓕.FieldOpAlgebra
, φsΛ.staticWickTerm
is defined as
φsΛ.sign • φsΛ.staticContract * 𝓝([φsΛ]ᵘᶜ)
.
This is a term which appears in the static version Wick's theorem.
Show Lean signature:
WickContraction.staticWickTerm {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : 𝓕.FieldOpAlgebra
For the empty list []
of 𝓕.FieldOp
, the staticWickTerm
of the Wick contraction
corresponding to the empty set ∅
(the only Wick contraction of []
) is 1
.
Show Lean signature:
WickContraction.staticWickTerm_empty_nil {𝓕 : FieldSpecification} : WickContraction.empty.staticWickTerm = 1
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, and an element φ
of
𝓕.FieldOp
, then (φsΛ ↩Λ φ 0 none).staticWickTerm
is equal to
φsΛ.sign • φsΛ.staticWickTerm * 𝓝(φ :: [φsΛ]ᵘᶜ)
The proof of this result relies on
-
staticContract_insert_none
to rewrite the static contract. -
sign_insert_none_zero
to rewrite the sign.
Show Lean signature:
WickContraction.staticWickTerm_insert_zero_none {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) : (WickContraction.insertAndContract φ φsΛ 0 none).staticWickTerm = WickContraction.sign φs φsΛ • ↑φsΛ.staticContract * FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (φ :: φsΛ.uncontractedListGet))
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, and a k
in φsΛ.uncontracted
, (φsΛ ↩Λ φ 0 (some k)).wickTerm
is equal
to the product of
-
the sign
𝓢(φ, φ₀…φᵢ₋₁)
-
the sign
φsΛ.sign
-
φsΛ.staticContract
-
s • [anPart φ, ofFieldOp φs[k]]ₛ
wheres
is the sign associated with movingφ
through uncontracted fields inφ₀…φₖ₋₁
-
the normal ordering of
[φsΛ]ᵘᶜ
with the field operatorφs[k]
removed.
The proof of this result ultimately relies on
-
staticContract_insert_some
to rewrite static contractions. -
normalOrder_uncontracted_some
to rewrite normal orderings. -
sign_insert_some_zero
to rewrite signs.
Show Lean signature:
WickContraction.staticWickTerm_insert_zero_some {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (k : { x // x ∈ φsΛ.uncontracted }) : (WickContraction.insertAndContract φ φsΛ 0 (some k)).staticWickTerm = WickContraction.sign φs φsΛ • (↑φsΛ.staticContract * (FieldSpecification.FieldOpAlgebra.contractStateAtIndex φ φsΛ.uncontractedListGet ((WickContraction.uncontractedFieldOpEquiv φs φsΛ) (some k)) * FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (PhysLean.List.optionEraseZ φsΛ.uncontractedListGet φ ((WickContraction.uncontractedFieldOpEquiv φs φsΛ) (some k))))))
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, the following relation
holds
φ * φsΛ.staticWickTerm = ∑ k, (φsΛ ↩Λ φ 0 k).staticWickTerm
where the sum is over all k
in Option φsΛ.uncontracted
, so k
is either none
or some k
.
The proof proceeds as follows:
-
ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum
is used to expandφ 𝓝([φsΛ]ᵘᶜ)
as a sum overk
inOption φsΛ.uncontracted
of terms involving[anPart φ, φs[k]]ₛ
. -
Then
staticWickTerm_insert_zero_none
andstaticWickTerm_insert_zero_some
are used to equate terms.
Show Lean signature:
WickContraction.mul_staticWickTerm_eq_sum {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) : FieldSpecification.FieldOpAlgebra.ofFieldOp φ * φsΛ.staticWickTerm = ∑ k : Option { x // x ∈ φsΛ.uncontracted }, (WickContraction.insertAndContract φ φsΛ 0 k).staticWickTerm
2.1.6.3. The Static Wick's theorem
For a list φs
of 𝓕.FieldOp
, the static version of Wick's theorem states that
φs = ∑ φsΛ, φsΛ.staticWickTerm
where the sum is over all Wick contraction φsΛ
.
The proof is via induction on φs
.
-
The base case
φs = []
is handled bystaticWickTerm_empty_nil
.
The inductive step works as follows:
For the LHS:
-
The proof considers
φ₀…φₙ
asφ₀(φ₁…φₙ)
and uses the induction hypothesis onφ₁…φₙ
. -
This gives terms of the form
φ * φsΛ.staticWickTerm
on whichmul_staticWickTerm_eq_sum
is used whereφsΛ
is a Wick contraction ofφ₁…φₙ
, to rewrite terms as a sum over optional uncontracted elements ofφsΛ
On the LHS we now have a sum over Wick contractions φsΛ
of φ₁…φₙ
(from 1) and optional
uncontracted elements of φsΛ
(from 2)
For the RHS:
-
The sum over Wick contractions of
φ₀…φₙ
on the RHS is split viainsertLift_sum
into a sum over Wick contractionsφsΛ
ofφ₁…φₙ
and sum over optional uncontracted elements ofφsΛ
.
Both sides are now sums over the same thing and their terms equate by the nature of the lemmas used.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.static_wick_theorem {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.ofFieldOpList φs = ∑ φsΛ : WickContraction φs.length, φsΛ.staticWickTerm
2.1.7. Wick's theorem
2.1.7.1. Time contractions
For a field specification 𝓕
, and φ
and ψ
elements of 𝓕.FieldOp
, the element of
𝓕.FieldOpAlgebra
, timeContract φ ψ
is defined to be 𝓣(φψ) - 𝓝(φψ)
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.timeContract {𝓕 : FieldSpecification} (φ ψ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra
For a field specification 𝓕
, and φ
and ψ
elements of 𝓕.FieldOp
, if
φ
and ψ
are time-ordered then
timeContract φ ψ = [anPart φ, ofFieldOp ψ]ₛ
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.timeContract_of_timeOrderRel {𝓕 : FieldSpecification} (φ ψ : 𝓕.FieldOp) (h : FieldSpecification.timeOrderRel φ ψ) : FieldSpecification.FieldOpAlgebra.timeContract φ ψ = (FieldSpecification.FieldOpAlgebra.superCommute (FieldSpecification.FieldOpAlgebra.anPart φ)) (FieldSpecification.FieldOpAlgebra.ofFieldOp ψ)
For a field specification 𝓕
, and φ
and ψ
elements of 𝓕.FieldOp
, if
φ
and ψ
are not time-ordered then
timeContract φ ψ = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • [anPart ψ, ofFieldOp φ]ₛ
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.timeContract_of_not_timeOrderRel_expand {𝓕 : FieldSpecification} (φ ψ : 𝓕.FieldOp) (h : ¬FieldSpecification.timeOrderRel φ ψ) : FieldSpecification.FieldOpAlgebra.timeContract φ ψ = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (𝓕.fieldOpStatistic ψ) • (FieldSpecification.FieldOpAlgebra.superCommute (FieldSpecification.FieldOpAlgebra.anPart ψ)) (FieldSpecification.FieldOpAlgebra.ofFieldOp φ)
For a field specification 𝓕
, and φ
and ψ
elements of 𝓕.FieldOp
, then
timeContract φ ψ
is in the center of 𝓕.FieldOpAlgebra
.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.timeContract_mem_center {𝓕 : FieldSpecification} (φ ψ : 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.timeContract φ ψ ∈ Subalgebra.center ℂ 𝓕.FieldOpAlgebra
For a list φs
of 𝓕.FieldOp
and a Wick contraction φsΛ
the
element of the center of 𝓕.FieldOpAlgebra
, φsΛ.timeContract
is defined as the product
of timeContract φs[j] φs[k]
over contracted pairs {j, k}
in φsΛ
with j < k
.
Show Lean signature:
WickContraction.timeContract {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : ↥(Subalgebra.center ℂ 𝓕.FieldOpAlgebra)
Show Lean signature:
WickContraction.timeContract_insert_none {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) : (WickContraction.insertAndContract φ φsΛ i none).timeContract = φsΛ.timeContract
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, a i ≤ φs.length
and a k
in φsΛ.uncontracted
such that k < i
, with the
condition that φs[k]
does not have time greater or equal to φ
, then
(φsΛ ↩Λ φ i (some k)).timeContract
is equal to the product of
-
[anPart φ, φs[k]]ₛ
-
φsΛ.timeContract
-
the exchange sign of
φ
with the uncontracted fields inφ₀…φₖ₋₁
. -
the exchange sign of
φ
with the uncontracted fields inφ₀…φₖ
.
The proof of this result ultimately is a consequence of definitions and
timeContract_of_not_timeOrderRel_expand
.
Show Lean signature:
WickContraction.timeContract_insert_some_of_not_lt {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : { x // x ∈ φsΛ.uncontracted }) (ht : ¬FieldSpecification.timeOrderRel φs[↑k] φ) (hik : ¬i < i.succAbove ↑k) : ↑(WickContraction.insertAndContract φ φsΛ i (some k)).timeContract = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => x ≤ ↑k) φsΛ.uncontracted)) • (FieldSpecification.FieldOpAlgebra.contractStateAtIndex φ φsΛ.uncontractedListGet ((WickContraction.uncontractedFieldOpEquiv φs φsΛ) (some k)) * ↑φsΛ.timeContract)
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, a i ≤ φs.length
and a k
in φsΛ.uncontracted
such that i ≤ k
, with the
condition that φ
has greater or equal time to φs[k]
, then
(φsΛ ↩Λ φ i (some k)).timeContract
is equal to the product of
-
[anPart φ, φs[k]]ₛ
-
φsΛ.timeContract
-
two copies of the exchange sign of
φ
with the uncontracted fields inφ₀…φₖ₋₁
. These two exchange signs cancel each other out but are included for convenience.
The proof of this result ultimately is a consequence of definitions and
timeContract_of_timeOrderRel
.
Show Lean signature:
WickContraction.timeContract_insert_some_of_lt {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : { x // x ∈ φsΛ.uncontracted }) (ht : FieldSpecification.timeOrderRel φ φs[↑k]) (hik : i < i.succAbove ↑k) : ↑(WickContraction.insertAndContract φ φsΛ i (some k)).timeContract = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => x < ↑k) φsΛ.uncontracted)) • (FieldSpecification.FieldOpAlgebra.contractStateAtIndex φ φsΛ.uncontractedListGet ((WickContraction.uncontractedFieldOpEquiv φs φsΛ) (some k)) * ↑φsΛ.timeContract)
For a list φs
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
,
and a Wick contraction φsucΛ
of [φsΛ]ᵘᶜ
,
(join φsΛ φsucΛ).sign • (join φsΛ φsucΛ).timeContract
is equal to the product of
-
φsΛ.sign • φsΛ.timeContract
and -
φsucΛ.sign • φsucΛ.timeContract
.
Show Lean signature:
WickContraction.join_sign_timeContract {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (φsucΛ : WickContraction φsΛ.uncontractedListGet.length) : WickContraction.sign φs (φsΛ.join φsucΛ) • ↑(φsΛ.join φsucΛ).timeContract = WickContraction.sign φs φsΛ • ↑φsΛ.timeContract * WickContraction.sign φsΛ.uncontractedListGet φsucΛ • ↑φsucΛ.timeContract
2.1.7.2. Wick terms
For a list φs
of 𝓕.FieldOp
, and a Wick contraction φsΛ
of φs
, the element
of 𝓕.FieldOpAlgebra
, φsΛ.wickTerm
is defined as
φsΛ.sign • φsΛ.timeContract * 𝓝([φsΛ]ᵘᶜ)
.
This is a term which appears in the Wick's theorem.
Show Lean signature:
WickContraction.wickTerm {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : 𝓕.FieldOpAlgebra
For the empty list []
of 𝓕.FieldOp
, the wickTerm
of the Wick contraction
corresponding to the empty set ∅
(the only Wick contraction of []
) is 1
.
Show Lean signature:
WickContraction.wickTerm_empty_nil {𝓕 : FieldSpecification} : WickContraction.empty.wickTerm = 1
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, and i ≤ φs.length
, then (φsΛ ↩Λ φ i none).wickTerm
is equal to
𝓢(φ, φ₀…φᵢ₋₁) φsΛ.sign • φsΛ.timeContract * 𝓝(φ :: [φsΛ]ᵘᶜ)
The proof of this result relies on
-
normalOrder_uncontracted_none
to rewrite normal orderings. -
timeContract_insert_none
to rewrite the time contract. -
sign_insert_none
to rewrite the sign.
Show Lean signature:
WickContraction.wickTerm_insert_none {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) : (WickContraction.insertAndContract φ φsΛ i none).wickTerm = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun k => i.succAbove k < i) Finset.univ)) • (WickContraction.sign φs φsΛ • ↑φsΛ.timeContract * FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (φ :: φsΛ.uncontractedListGet)))
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, i ≤ φs.length
and a k
in φsΛ.uncontracted
,
such that all 𝓕.FieldOp
in φ₀…φᵢ₋₁
have time strictly less than φ
and
φ
has a time greater than or equal to all FieldOp
in φ₀…φₙ
, then
(φsΛ ↩Λ φ i (some k)).staticWickTerm
is equal to the product of
-
the sign
𝓢(φ, φ₀…φᵢ₋₁)
-
the sign
φsΛ.sign
-
φsΛ.timeContract
-
s • [anPart φ, ofFieldOp φs[k]]ₛ
wheres
is the sign associated with movingφ
through uncontracted fields inφ₀…φₖ₋₁
-
the normal ordering
[φsΛ]ᵘᶜ
with the field corresponding tok
removed.
The proof of this result relies on
-
timeContract_insert_some_of_not_lt
andtimeContract_insert_some_of_lt
to rewrite time contractions. -
normalOrder_uncontracted_some
to rewrite normal orderings. -
sign_insert_some_of_not_lt
andsign_insert_some_of_lt
to rewrite signs.
Show Lean signature:
WickContraction.wickTerm_insert_some {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) (k : { x // x ∈ φsΛ.uncontracted }) (hlt : ∀ (k : Fin φs.length), FieldSpecification.timeOrderRel φ φs[k]) (hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬FieldSpecification.timeOrderRel φs[k] φ) : (WickContraction.insertAndContract φ φsΛ i (some k)).wickTerm = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => i.succAbove x < i) Finset.univ)) • (WickContraction.sign φs φsΛ • (FieldSpecification.FieldOpAlgebra.contractStateAtIndex φ φsΛ.uncontractedListGet ((WickContraction.uncontractedFieldOpEquiv φs φsΛ) (some k)) * ↑φsΛ.timeContract) * FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (PhysLean.List.optionEraseZ φsΛ.uncontractedListGet φ ((WickContraction.uncontractedFieldOpEquiv φs φsΛ) (some k)))))
For a list φs = φ₀…φₙ
of 𝓕.FieldOp
, a Wick contraction φsΛ
of φs
, an element φ
of
𝓕.FieldOp
, and i ≤ φs.length
such that all 𝓕.FieldOp
in φ₀…φᵢ₋₁
have time strictly less than φ
and
φ
has a time greater than or equal to all FieldOp
in φ₀…φₙ
, then
φ * φsΛ.wickTerm = 𝓢(φ, φ₀…φᵢ₋₁) • ∑ k, (φsΛ ↩Λ φ i k).wickTerm
where the sum is over all k
in Option φsΛ.uncontracted
, so k
is either none
or some k
.
The proof proceeds as follows:
-
ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum
is used to expandφ 𝓝([φsΛ]ᵘᶜ)
as a sum overk
inOption φsΛ.uncontracted
of terms involving[anPart φ, φs[k]]ₛ
. -
Then
wickTerm_insert_none
andwickTerm_insert_some
are used to equate terms.
Show Lean signature:
WickContraction.mul_wickTerm_eq_sum {𝓕 : FieldSpecification} (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) (hlt : ∀ (k : Fin φs.length), FieldSpecification.timeOrderRel φ φs[k]) (hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬FieldSpecification.timeOrderRel φs[k] φ) : FieldSpecification.FieldOpAlgebra.ofFieldOp φ * φsΛ.wickTerm = (FieldStatistic.exchangeSign (𝓕.fieldOpStatistic φ)) (FieldStatistic.ofFinset 𝓕.fieldOpStatistic φs.get (Finset.filter (fun x => i.succAbove x < i) Finset.univ)) • ∑ k : Option { x // x ∈ φsΛ.uncontracted }, (WickContraction.insertAndContract φ φsΛ i k).wickTerm
2.1.7.3. Wick's theorem
For a list φs
of 𝓕.FieldOp
, Wick's theorem states that
𝓣(φs) = ∑ φsΛ, φsΛ.wickTerm
where the sum is over all Wick contraction φsΛ
.
The proof is via induction on φs
.
-
The base case
φs = []
is handled bywickTerm_empty_nil
.
The inductive step works as follows:
For the LHS:
-
timeOrder_eq_maxTimeField_mul_finset
is used to write𝓣(φ₀…φₙ)
as𝓢(φᵢ,φ₀…φᵢ₋₁) • φᵢ * 𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)
whereφᵢ
is the maximal time field inφ₀…φₙ
-
The induction hypothesis is then used on
𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)
to expand it as a sum over Wick contractions ofφ₀…φᵢ₋₁φᵢ₊₁φₙ
. -
This gives terms of the form
φᵢ * φsΛ.wickTerm
on whichmul_wickTerm_eq_sum
is used whereφsΛ
is a Wick contraction ofφ₀…φᵢ₋₁φᵢ₊₁φ
, to rewrite terms as a sum over optional uncontracted elements ofφsΛ
On the LHS we now have a sum over Wick contractions φsΛ
of φ₀…φᵢ₋₁φᵢ₊₁φ
(from 2) and optional
uncontracted elements of φsΛ
(from 3)
For the RHS:
-
The sum over Wick contractions of
φ₀…φₙ
on the RHS is split viainsertLift_sum
into a sum over Wick contractionsφsΛ
ofφ₀…φᵢ₋₁φᵢ₊₁φ
and sum over optional uncontracted elements ofφsΛ
.
Both sides are now sums over the same thing and their terms equate by the nature of the lemmas used.
Show Lean signature:
FieldSpecification.wicks_theorem {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList φs) = ∑ φsΛ : WickContraction φs.length, φsΛ.wickTerm
2.1.8. Normal-ordered Wick's theorem
Let φs
be a list of 𝓕.FieldOp
and φsΛ
a WickContraction
with
at least one contraction between 𝓕.FieldOp
that do not have the same time. Then
𝓣(φsΛ.staticContract.1) = 0
.
Show Lean signature:
WickContraction.EqTimeOnly.timeOrder_staticContract_of_not_mem {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (hl : ¬φsΛ.EqTimeOnly) : FieldSpecification.FieldOpAlgebra.timeOrder ↑φsΛ.staticContract = 0
Let φs
be a list of 𝓕.FieldOp
and φsΛ
a WickContraction
of φs
within
which every contraction involves two 𝓕.FieldOp
s that have the same time, then
φsΛ.staticContract = φsΛ.timeContract
.
Show Lean signature:
WickContraction.EqTimeOnly.staticContract_eq_timeContract_of_eqTimeOnly {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (h : φsΛ.EqTimeOnly) : φsΛ.staticContract = φsΛ.timeContract
Let φs
be a list of 𝓕.FieldOp
, φsΛ
a WickContraction
of φs
within
which every contraction involves two 𝓕.FieldOp
s that have the same time and
b
a general element in 𝓕.FieldOpAlgebra
. Then
𝓣(φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣(b)
.
This follows from properties of orderings and the ideal defining 𝓕.FieldOpAlgebra
.
Show Lean signature:
WickContraction.EqTimeOnly.timeOrder_timeContract_mul_of_eqTimeOnly_left {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (hl : φsΛ.EqTimeOnly) (b : 𝓕.FieldOpAlgebra) : FieldSpecification.FieldOpAlgebra.timeOrder (↑φsΛ.timeContract * b) = ↑φsΛ.timeContract * FieldSpecification.FieldOpAlgebra.timeOrder b
For a list φs
of 𝓕.FieldOp
, then
𝓣(φs) = ∑ φsΛ, φsΛ.sign • φsΛ.timeContract * 𝓣(𝓝([φsΛ]ᵘᶜ))
where the sum is over all Wick contraction φsΛ
which only have equal time contractions.
This result follows from
-
static_wick_theorem
to rewrite𝓣(φs)
on the left hand side as a sum of𝓣(φsΛ.staticWickTerm)
. -
EqTimeOnly.timeOrder_staticContract_of_not_mem
andtimeOrder_timeOrder_mid
to set to those𝓣(φsΛ.staticWickTerm)
for whichφsΛ
has a contracted pair which are not equal time to zero. -
staticContract_eq_timeContract_of_eqTimeOnly
to rewrite the static contract in the remaining𝓣(φsΛ.staticWickTerm)
as a time contract. -
timeOrder_timeContract_mul_of_eqTimeOnly_left
to move the time contracts out of the time ordering.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.timeOrder_ofFieldOpList_eqTimeOnly {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList φs) = ∑ φsΛ : { φsΛ // φsΛ.EqTimeOnly }, WickContraction.sign φs ↑φsΛ • ↑(↑φsΛ).timeContract * FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (↑φsΛ).uncontractedListGet))
For a list φs
of 𝓕.FieldOp
, then
𝓣(𝓝(φs)) = 𝓣(φs) - ∑ φsΛ, φsΛ.sign • φsΛ.timeContract.1 * 𝓣(𝓝([φsΛ]ᵘᶜ))
where the sum is over all non-empty Wick contraction φsΛ
which only
have equal time contractions.
This result follows directly from
-
timeOrder_ofFieldOpList_eqTimeOnly
Show Lean signature:
FieldSpecification.FieldOpAlgebra.normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList φs)) = FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList φs) - ∑ φsΛ : { φsΛ // φsΛ.EqTimeOnly ∧ φsΛ ≠ WickContraction.empty }, WickContraction.sign φs ↑φsΛ • ↑(↑φsΛ).timeContract * FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (↑φsΛ).uncontractedListGet))
For a list φs
of 𝓕.FieldOp
, then 𝓣(φs)
is equal to the sum of
-
∑ φsΛ, φsΛ.wickTerm
where the sum is over all Wick contractionφsΛ
which have no contractions of equal time. -
∑ φsΛ, φsΛ.sign • φsΛ.timeContract * (∑ φssucΛ, φssucΛ.wickTerm)
, where the first sum is over all Wick contractionφsΛ
which only have equal time contractions and the second sum is over all Wick contractionφssucΛ
of the uncontracted elements ofφsΛ
which do not have any equal time contractions.
The proof proceeds as follows
-
wicks_theorem
is used to rewrite𝓣(φs)
as a sum over all Wick contractions. -
The sum over all Wick contractions is then split additively into two parts based on having or not having an equal time contractions.
-
Using
join
, the sum∑ φsΛ, _
over Wick contractions which do have equal time contractions is split into two sums∑ φsΛ, ∑ φsucΛ, _
, the first over non-zero elements which only have equal time contractions and the second over Wick contractionsφsucΛ
of[φsΛ]ᵘᶜ
which do not have equal time contractions. -
join_sign_timeContract
is then used to equate terms.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.timeOrder_haveEqTime_split {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList φs) = ∑ φsΛ : { φsΛ // ¬φsΛ.HaveEqTime }, WickContraction.sign φs ↑φsΛ • ↑(↑φsΛ).timeContract * FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList (↑φsΛ).uncontractedListGet) + ∑ φsΛ : { φsΛ // φsΛ.EqTimeOnly ∧ φsΛ ≠ WickContraction.empty }, WickContraction.sign φs ↑φsΛ • ↑(↑φsΛ).timeContract * ∑ φssucΛ : { φssucΛ // ¬φssucΛ.HaveEqTime }, (↑φssucΛ).wickTerm
For a list φs
of 𝓕.FieldOp
, the normal-ordered version of Wick's theorem states that
𝓣(𝓝(φs)) = ∑ φsΛ, φsΛ.wickTerm
where the sum is over all Wick contraction φsΛ
in which no two contracted elements
have the same time.
The proof proceeds by induction on φs
, with the base case []
holding by following
through definitions. and the inductive case holding as a result of
-
timeOrder_haveEqTime_split
-
normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty
-
and the induction hypothesis on
𝓣(𝓝([φsΛ.1]ᵘᶜ))
for contractionsφsΛ
ofφs
which only have equal time contractions and are non-empty.
Show Lean signature:
FieldSpecification.FieldOpAlgebra.wicks_theorem_normal_order {𝓕 : FieldSpecification} (φs : List 𝓕.FieldOp) : FieldSpecification.FieldOpAlgebra.timeOrder (FieldSpecification.FieldOpAlgebra.normalOrder (FieldSpecification.FieldOpAlgebra.ofFieldOpList φs)) = ∑ φsΛ : { φsΛ // ¬φsΛ.HaveEqTime }, (↑φsΛ).wickTerm