PhysLean Notes

5.1.Ā Higgs potentialšŸ”—

5.1.1.Ā Introduction

The Higgs potential is a key part of the Standard Model of particle physics. It is a scalar potential which is used to give mass to the elementary particles. The Higgs potential is a polynomial of degree four in the Higgs field.

5.1.2.Ā The Higgs field

šŸ”—def
StandardModel.HiggsVec : Type
StandardModel.HiggsVec : Type

The vector space HiggsVec is defined to be the complex Euclidean space of dimension 2. For a given spacetime point a Higgs field gives a value in HiggsVec.

šŸ”—def
StandardModel.HiggsBundle : SpaceTime → Type
StandardModel.HiggsBundle : SpaceTime → Type

The HiggsBundle is defined as the trivial vector bundle with base SpaceTime and fiber HiggsVec. Thus as a manifold it corresponds to ā„ā“ Ɨ ℂ².

šŸ”—def
StandardModel.HiggsField : Type
StandardModel.HiggsField : Type

The type HiggsField is defined such that elements are smooth sections of the trivial vector bundle HiggsBundle. Such elements are Higgs fields. Since HiggsField is trivial as a vector bundle, a Higgs field is equivalent to a smooth map from SpaceTime to HiggsVec.

5.1.3.Ā The Higgs potential

šŸ”—structure
StandardModel.HiggsField.Potential : Type
StandardModel.HiggsField.Potential : Type

The structure Potential is defined with two fields, μ2 corresponding to the mass-squared of the Higgs boson, and l corresponding to the coefficent of the quartic term in the Higgs potential. Note that l is usually denoted λ.

Constructor

StandardModel.HiggsField.Potential.mk

Fields

μ2 : ā„

The mass-squared of the Higgs boson.

š“µ : ā„

The quartic coupling of the Higgs boson. Usually denoted Ī».

šŸ”—def
StandardModel.HiggsField.normSq (φ : HiggsField) : SpaceTime → ā„
StandardModel.HiggsField.normSq (φ : HiggsField) : SpaceTime → ā„

Given an element φ of HiggsField, normSq φ is defined as the the function SpaceTime → ā„ obtained by taking the square norm of the pointwise Higgs vector. In other words, normSq φ x = ‖φ x‖ ^ 2.

The notation ‖φ‖_H^2 is used for the normSq φ.

šŸ”—def
StandardModel.HiggsField.Potential.toFun (P : Potential) (φ : HiggsField) (x : SpaceTime) : ā„
StandardModel.HiggsField.Potential.toFun (P : Potential) (φ : HiggsField) (x : SpaceTime) : ā„

Given a element P of Potential, P.toFun is Higgs potential. It is defined for a Higgs field φ and a spacetime point x as

-μ² ‖φ‖_H^2 x + l * ‖φ‖_H^2 x * ‖φ‖_H^2 x.

5.1.3.1.Ā Properties of the Higgs potential

šŸ”—theorem
StandardModel.HiggsField.Potential.neg_š“µ_quadDiscrim_zero_bound (P : Potential) (h : P.š“µ < 0) (φ : HiggsField) (x : SpaceTime) : P.toFun φ x ≤ -P.μ2 ^ 2 / (4 * P.š“µ)
StandardModel.HiggsField.Potential.neg_š“µ_quadDiscrim_zero_bound (P : Potential) (h : P.š“µ < 0) (φ : HiggsField) (x : SpaceTime) : P.toFun φ x ≤ -P.μ2 ^ 2 / (4 * P.š“µ)

For an element P of Potential, if l < 0 then the following upper bound for the potential exists

P.toFun φ x ≤ - μ2 ^ 2 / (4 * š“µ).

šŸ”—theorem
StandardModel.HiggsField.Potential.pos_š“µ_quadDiscrim_zero_bound (P : Potential) (h : 0 < P.š“µ) (φ : HiggsField) (x : SpaceTime) : -P.μ2 ^ 2 / (4 * P.š“µ) ≤ P.toFun φ x
StandardModel.HiggsField.Potential.pos_š“µ_quadDiscrim_zero_bound (P : Potential) (h : 0 < P.š“µ) (φ : HiggsField) (x : SpaceTime) : -P.μ2 ^ 2 / (4 * P.š“µ) ≤ P.toFun φ x

For an element P of Potential, if 0 < l then the following lower bound for the potential exists

- μ2 ^ 2 / (4 * š“µ) ≤ P.toFun φ x.

šŸ”—theorem
StandardModel.HiggsField.Potential.neg_š“µ_sol_exists_iff (P : Potential) (hš“µ : P.š“µ < 0) (c : ā„) : (∃ φ x, P.toFun φ x = c) ↔ 0 < P.μ2 ∧ c ≤ 0 ∨ P.μ2 ≤ 0 ∧ c ≤ -P.μ2 ^ 2 / (4 * P.š“µ)
StandardModel.HiggsField.Potential.neg_š“µ_sol_exists_iff (P : Potential) (hš“µ : P.š“µ < 0) (c : ā„) : (∃ φ x, P.toFun φ x = c) ↔ 0 < P.μ2 ∧ c ≤ 0 ∨ P.μ2 ≤ 0 ∧ c ≤ -P.μ2 ^ 2 / (4 * P.š“µ)

For an element P of Potential with l < 0 and a real c : ā„, there exists a Higgs field φ and a spacetime point x such that P.toFun φ x = c iff one of the following two conditions hold:

  • 0 < μ2 and c ≤ 0. That is, if l is negative and μ2 positive, then the potential takes every non-positive value.

  • or μ2 ≤ 0 and c ≤ - μ2 ^ 2 / (4 * š“µ). That is, if l is negative and μ2 non-positive, then the potential takes every value less then or equal to its bound.

šŸ”—theorem
StandardModel.HiggsField.Potential.pos_š“µ_sol_exists_iff (P : Potential) (hš“µ : 0 < P.š“µ) (c : ā„) : (∃ φ x, P.toFun φ x = c) ↔ P.μ2 < 0 ∧ 0 ≤ c ∨ 0 ≤ P.μ2 ∧ -P.μ2 ^ 2 / (4 * P.š“µ) ≤ c
StandardModel.HiggsField.Potential.pos_š“µ_sol_exists_iff (P : Potential) (hš“µ : 0 < P.š“µ) (c : ā„) : (∃ φ x, P.toFun φ x = c) ↔ P.μ2 < 0 ∧ 0 ≤ c ∨ 0 ≤ P.μ2 ∧ -P.μ2 ^ 2 / (4 * P.š“µ) ≤ c

For an element P of Potential with 0 < l and a real c : ā„, there exists a Higgs field φ and a spacetime point x such that P.toFun φ x = c iff one of the following two conditions hold:

  • μ2 < 0 and 0 ≤ c. That is, if l is positive and μ2 negative, then the potential takes every non-negative value.

  • or 0 ≤ μ2 and - μ2 ^ 2 / (4 * š“µ) ≤ c. That is, if l is positive and μ2 non-negative, then the potential takes every value greater then or equal to its bound.

5.1.3.2.Ā Boundedness of the Higgs potential

šŸ”—def
StandardModel.HiggsField.Potential.IsBounded (P : Potential) : Prop
StandardModel.HiggsField.Potential.IsBounded (P : Potential) : Prop

Given a element P of Potential, the proposition IsBounded P is true if and only if there exists a real c such that for all Higgs fields φ and spacetime points x, the Higgs potential corresponding to φ at x is greater then or equal toc. I.e.

āˆ€ Φ x, c ≤ P.toFun Φ x.

šŸ”—theorem
StandardModel.HiggsField.Potential.isBounded_š“µ_nonneg (P : Potential) (h : P.IsBounded) : 0 ≤ P.š“µ
StandardModel.HiggsField.Potential.isBounded_š“µ_nonneg (P : Potential) (h : P.IsBounded) : 0 ≤ P.š“µ

Given a element P of Potential which is bounded, the quartic coefficent š“µ of P is non-negative.

šŸ”—theorem
StandardModel.HiggsField.Potential.isBounded_of_š“µ_pos (P : Potential) (h : 0 < P.š“µ) : P.IsBounded
StandardModel.HiggsField.Potential.isBounded_of_š“µ_pos (P : Potential) (h : 0 < P.š“µ) : P.IsBounded

Given a element P of Potential with 0 < š“µ, then the potential is bounded.

5.1.3.3.Ā Maximum and minimum of the Higgs potential

šŸ”—theorem
StandardModel.HiggsField.Potential.isMaxOn_iff_field_of_š“µ_neg (P : Potential) (hš“µ : P.š“µ < 0) (φ : HiggsField) (x : SpaceTime) : IsMaxOn (fun x => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔ P.μ2 ≤ 0 ∧ ‖φ‖_H^2 x = P.μ2 / (2 * P.š“µ) ∨ 0 < P.μ2 ∧ φ x = 0
StandardModel.HiggsField.Potential.isMaxOn_iff_field_of_š“µ_neg (P : Potential) (hš“µ : P.š“µ < 0) (φ : HiggsField) (x : SpaceTime) : IsMaxOn (fun x => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔ P.μ2 ≤ 0 ∧ ‖φ‖_H^2 x = P.μ2 / (2 * P.š“µ) ∨ 0 < P.μ2 ∧ φ x = 0

Given an element P of Potential with l < 0, then the Higgs field φ and spacetime point x maximizes the potential if and only if one of the following conditions holds

  • μ2 ≤ 0 and ‖φ‖_H^2 x = μ2 / (2 * š“µ).

  • or 0 < μ2 and φ x = 0.

šŸ”—theorem
StandardModel.HiggsField.Potential.isMinOn_iff_field_of_š“µ_pos (P : Potential) (hš“µ : 0 < P.š“µ) (φ : HiggsField) (x : SpaceTime) : IsMinOn (fun x => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔ 0 ≤ P.μ2 ∧ ‖φ‖_H^2 x = P.μ2 / (2 * P.š“µ) ∨ P.μ2 < 0 ∧ φ x = 0
StandardModel.HiggsField.Potential.isMinOn_iff_field_of_š“µ_pos (P : Potential) (hš“µ : 0 < P.š“µ) (φ : HiggsField) (x : SpaceTime) : IsMinOn (fun x => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔ 0 ≤ P.μ2 ∧ ‖φ‖_H^2 x = P.μ2 / (2 * P.š“µ) ∨ P.μ2 < 0 ∧ φ x = 0

Given an element P of Potential with 0 < l, then the Higgs field φ and spacetime point x minimize the potential if and only if one of the following conditions holds

  • 0 ≤ μ2 and ‖φ‖_H^2 x = μ2 / (2 * š“µ).

  • or μ2 < 0 and φ x = 0.